

Hicksian Demands and Expenditure Function for Quasilinear Preferences

Given the following utility function $u(x_1, x_2) = x_1 + \ln(x_2)$:

1. Obtain the Hicksian demands.
2. Obtain the expenditure function.
3. Obtain the Hicksian demands without solving the expenditure minimization problem.

Solutions

1. Construct the Lagrangian for minimization:

$$L = p_1 x_1 + p_2 x_2 + \lambda(\bar{U} - x_1 - \ln(x_2))$$

The first-order conditions are:

$$\begin{aligned} L'_{x_1} &= p_1 - \lambda = 0 \\ L'_{x_2} &= p_2 - \frac{\lambda}{x_2} = 0 \\ L'_{\lambda} &= \bar{U} - x_1 - \ln(x_2) = 0 \end{aligned}$$

From the first two equations, solve for λ and equate:

$$p_1 = p_2 x_2$$

Therefore:

$$x_2^h = \frac{p_1}{p_2}$$

Now solve for x_1 :

$$\begin{aligned} \bar{U} - x_1 - \ln\left(\frac{p_1}{p_2}\right) &= 0 \\ x_1^h &= \bar{U} - \ln\left(\frac{p_1}{p_2}\right) \end{aligned}$$

If p_1 is very high or \bar{U} is very low, then the optimal quantities of x_1 should be zero. This leads us to piecewise Hicksian demands:

$$x_1^h = \begin{cases} \bar{U} - \ln\left(\frac{p_1}{p_2}\right) & \text{if } \bar{U} \geq \ln\left(\frac{p_1}{p_2}\right) \\ 0 & \text{if } \bar{U} < \ln\left(\frac{p_1}{p_2}\right) \end{cases}$$

And therefore, this leads us to the following piecewise function for x_2 :

$$x_2^h = \begin{cases} \frac{p_1}{p_2} & \text{if } \bar{U} \geq \ln\left(\frac{p_1}{p_2}\right) \\ e^{\bar{U}} & \text{if } \bar{U} < \ln\left(\frac{p_1}{p_2}\right) \end{cases}$$

2. The expenditure function is also piecewise:

$$E(p_1, p_2, \bar{U}) = \begin{cases} p_1[\bar{U} - \ln\left(\frac{p_1}{p_2}\right)] + p_1 & \text{if } \bar{U} \geq \ln\left(\frac{p_1}{p_2}\right) \\ p_2 e^{\bar{U}} & \text{if } \bar{U} < \ln\left(\frac{p_1}{p_2}\right) \end{cases}$$

3. To do this, we use Sheppard's Lemma (assuming an interior solution). First, we re-express the expenditure function:

$$\begin{aligned} E &= p_1 \bar{U} - p_1 \ln(p_1) + p_1 \ln(p_2) + p_1 \\ \frac{\partial E}{\partial p_1} &= x_1^h = \bar{U} - [\ln(p_1) + \frac{p_1}{p_1}] + \ln(p_2) + 1 = \bar{U} - (\ln(p_1) - \ln(p_2)) = \bar{U} - \ln\left(\frac{p_1}{p_2}\right) \\ \frac{\partial E}{\partial p_2} &= x_2^h = \frac{p_1}{p_2} \end{aligned}$$

Now assume a corner solution:

$$\begin{aligned} \frac{\partial E}{\partial p_1} &= x_1^h = 0 \\ \frac{\partial E}{\partial p_2} &= x_2^h = e^{\bar{U}} \end{aligned}$$