Juan Andrés Cabral

Hicksian Demands and Expenditure Function for Quasilinear
Preferences

Given the following utility function u(z1,x2) = 1 + In(za):
1. Obtain the Hicksian demands.

2. Obtain the expenditure function.

3. Obtain the Hicksian demands without solving the expenditure minimization problem.
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Solutions

1. Construct the Lagrangian for minimization:
L = p1x1 + pazo + MU — z1 — In(z2))

The first-order conditions are:
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From the first two equations, solve for A\ and equate:

P1 = P22
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Now solve for z1:

If p; is very high or U is very low, then the optimal quantities of 21 should be zero. This leads us to
piecewise Hicksian demands:
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And therefore, this leads us to the following piecewise function for xs:
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2. The expenditure function is also piecewise:
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3. To do this, we use Shepard’s Lemma (assuming an interior solution). First, we re-express the expen-
diture function:

E =piU — piin(p1) + piln(p2) + p1
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Now assume a corner solution:
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